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Combining high spatial resolution multi-temporal satellite
data with leaf-on LiDAR to enhance tree species
discrimination at the crown level
Fang Fang , Brenden E. McNeil, Timothy A. Warner and Aaron E. Maxwell

Department of Geology and Geography, West Virginia University, Morgantown, WV, USA

ABSTRACT
The long-standing goal of discriminating tree species at the
crown-level from high spatial resolution imagery remains challen-
ging. The aim of this study is to evaluate whether combining (a)
high spatial resolution multi-temporal images from different phe-
nological periods (spring, summer and autumn), and (b) leaf-on
LiDAR height and intensity data can enhance the ability to dis-
criminate the species of individual tree crowns of red oak (Quercus
rubra), sugar maple (Acer saccharum), tulip poplar (Liriodendron
tulipifera), and black cherry (Prunus serotina) in the Fernow
Experimental Forest, West Virginia, USA. We used RandomForest
models to measure a loss of classification accuracy caused by
iteratively removing from the classification one or more groups
from six groups of variables: spectral reflectance from all multi-
spectral bands in the (1) spring, (2) summer, and (3) autumn
images, (4) vegetation indices derived from the three multispectral
datasets, (5) canopy height and intensity from the LiDAR imagery,
and (6) texture related variables from the panchromatic and LiDAR
datasets. We also used ANOVA and decision tree analyses to
elucidate how the multispectral and LiDAR datasets combine to
help discriminate tree species based on their unique phenological,
spectral, textural, and crown architectural traits. From these
results, we conclude that combing high spatial resolution multi-
temporal satellite data with LiDAR datasets can enhance the ability
to discriminate tree species at the crown level.
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1. Introduction

Obtaining spatially explicit data on tree species composition can lead to improved
management of biodiversity and the provision of ecosystem services related to air and
water quality (Dwyer, Nowak, and Noble 2003; Karlson et al. 2016). Tree species informa-
tion is traditionally derived via field survey or aerial interpretation (Pu and Landry 2012),
which is time-consuming and quite limited for broad-scale tree species mapping. To
date, with the growing availability of high-spatial resolution and high-spectral resolution
images from various sensors, researchers are increasingly using imagery to classify
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individual trees in both rural and urban settings (Alonzo, Bookhagen, and Roberts 2014;
Cho, Malahlela, and Ramoelo 2015; Cochrane 2000; Colgan et al. 2012; Dalponte et al.
2013; Immitzer, Atzberger, and Koukal 2012; Key et al. 2001; Melgani and Bruzzone 2004;
Omer et al. 2016; Pu and Landry 2012; Van Ewijk et al. 2014; Verlič et al. 2014; Waser
et al. 2014; Zhang and Hu 2012). These studies not only illustrate the potential to
discriminate species using phenological variation in their reflectance spectra, but also
that tree species can be better differentiated by also using LiDAR-derived structural and
intensity properties (for a detailed review, see Fassnacht et al. 2016). Here, we take
advantage of both spectral and structural properties to help quantify and better under-
stand how passive and active remote sensing data can improve discrimination of tree
species at the individual crown-level.

Using multi-temporal data to capture different phenological patterns is a widely used
approach for tree species discrimination (Key et al. 2001; Madonsela et al. 2017; Reed
et al. 1994; Wolter et al. 1995). By incorporating seasonal variation in the biochemical,
physiological and structural properties of tree crowns, spectral variation linked to
phenology has been adopted for many different remote sensing applications, including
climate interactions (e.g. He et al. 2015), land cover assessment (Ganguly et al. 2010),
crop observation (Sakamoto et al. 2005) and tree species mapping (Reed et al. 1994).
However, at high spatial resolutions, it is challenging to obtain satisfactory images that
capture phenological patterns for differentiating individual trees for an entire growing
season (Reed, Schwartz, and Xiao 2009). A number of studies have therefore used a
variety of sensors to capture the most striking seasonal characteristics (Voss and
Sugumaran 2008; Wolter et al. 1995). Studies involving multi-temporal datasets generally
conclude that the most informative image acquisition times are often in short windows
surrounding the spring green-up period, peak summer, and autumn senescence phe-
nology periods (Hill et al. 2010; Key et al. 2001; Klosterman et al. 2014; Voss and
Sugumaran 2008; Wolter and Townsend 2011).

A key advantage of LiDAR for tree species discrimination is its ability to measure three-
dimensional features useful for delineating tree crowns and describing species differences in
crown architecture and structure (Alonzo, Bookhagen, and Roberts 2014; Brandtberg 2007;
Dalponte, Bruzzone, and Gianelle 2008; Dalponte et al. 2013; Fang et al. 2016; Ghosh et al.
2014; Heinzel and Koch 2011; Kim 2007; Liu, Im, and Quackenbush 2015; Vaughn, Moskal, and
Turnblom 2012). For tree species classification, some studies have also recognized the value of
combining LiDAR andmultispectral data. Especially due to the complexity of tree crowns and
similarity of spectral features between species, height information from LiDAR is often the
most important factor to improve discrimination performance (Alonzo, Bookhagen, and
Roberts 2014; Dalponte, Bruzzone, and Gianelle 2008; Jones, Coops, and Sharma 2010).
LiDAR is also increasingly being used to link structural and spectral information in the form
of the intensity of returns, which is related to the reflecting object’s spectral reflectance and
the proportion of the laser beam cross-section that intersects with that object (Brandtberg
2007; Eitel et al. 2016; Fassnacht et al. 2016). LiDAR intensity provides invaluable information
on species differences in crown architecture, thereby increasing differentiation of tree species
(Brandtberg et al. 2003). For instance, broadleaf trees and conifers can be distinguished by
LiDAR intensity values because coniferous tree architectures scatter more infrared light down-
ward into their crowns, and thus provide a lower intensity value compared with broadleaved
trees (Kim 2007; Knyazikhin et al. 2013; Vauhkonen et al. 2014). Intensity also differs within
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functional groups; for needleleaf evergreen trees, Holmgren and Persson (2004) found that
the mean intensity is higher for Norway spruce (Picea abies L. Karst) trees, with a higher
standard deviation of intensity due to denser leaves, comparedwith Scots pines. Nevertheless,
a full understanding of LiDAR intensity for species discrimination (Fassnacht et al. 2016;
Korpela et al. 2010), and its potential, especially relative to other spectral and structural
information, warrants further evaluation.

The primary goal for this study is to evaluate the utility of combining (a) high spatial
resolution multispectral images from three different phenological stages, and (b) height
and intensity data from leaf-on LiDAR data, to classify tree species at the individual
crown level with a machine learning classifier at the Fernow Experimental Forest (FEF),
West Virginia. We hypothesize that each of these image datasets will improve the
separability of tree species, and add meaningful biophysical information, thereby enhan-
cing the ability to discriminate tree species remotely.

Our approach assumes a geographic object-oriented (GEOBIA) framework for tree-
species classification (Warner et al. 1999). From each tree crown polygon, we extract six
groups of variables, including spectral reflectance information from optical imagery that
captures (1) spring, (2) summer, and (3) autumn phenology, (4) height and intensity data
from leaf-on (peak summer) LiDAR, as well as (5) spectral indices and (6) texture informa-
tion derived from the first four groups of variables. Then, we evaluate the relative perfor-
mance of these groups of variables in Random Forest (RF) classification models. We also use
analysis of variance (ANOVA) and decision trees to help understand how the LiDAR and
phenological variables work individually, as well as work together to identify the distinct
spectral and structural properties of each tree species. Together, these approaches are
designed to help test how combinations of variables can provide a more robust method for
measuring a fuller suite of spectral, phenological, and crown architectural differences useful
for discriminating tree species with remotely sensed data.

2. Methods

2.1. Study area

Our study site includes two unmanaged reference compartments within the United
States Department of Agriculture (USDA) Forest Service’s Fernow Experimental Forest
(FEF), located in Tucker County, West Virginia (Figure 1: 39°3ʹ15ʹ’N, 79°41ʹ15ʹ’W). The
topography within each of these roughly 40 ha compartments is steeply sloped with
elevations ranging between 762 and 854 m (Burnham et al. 2017). The forests have
been unmanaged following an almost complete harvest in the 1920’s. Mean annual
precipitation is approximately 1450 mm and mean annual temperature is 9.2°C. The
dominant tree species are red oak (Quercus rubra), sugar maple (Acer saccharum),
tulip poplar (Liriodendron tulipifera), and black cherry (Prunus serotina). Other species
include American basswood (Tilia Americana), black birch (Betula lenta), chestnut oak
(Quercus prinus), cucumber magnolia (Magnolia acuminata), frasier magnolia
(Magnolia fraseri), red maple (Acer rubrum), shagbark hickory (Carya ovata), white
ash (Fraxinus americana) and white oak (Quercus alba).
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2.2. Methods overview

Our general workflow included a field survey, manual delineation of individual crown
polygons, data preprocessing, feature extraction, feature selection and grouping using
Random Forests to evaluate the relative performance of feature groups, and finally,
using decision trees and ANOVA to evaluate data combinations (Figure 2).

2.3. Field measurements

We completed all the field mapping of tree crowns during May 2015 using 0.2 hectare (0.5
acre) circular permanent forest plots within the two selected reference compartments at the
Fernow: watershed 4 (WS 4) and the biological control area (BCA) (Figure 1). For each tree
reaching the canopy in these plots, we recorded the species name, diameter at breast
height (DBH), and tree height as measured with a Nikon Forestry Pro Laser Rangefinder. We
also used the laser range finder to preciselymap the distance and bearing of each stem from
the plot centroids. We recorded the location of all centre points with a survey grade post-
processed GPS unit (<0.5 m error). Following these measurements, we hand-sketched the
crown extents of eachmapped tree to aid ourmanual crown delineation process conducted
with the imagery datasets.

2.4. Imagery datasets

The LiDAR data were collected on 20 July 2014 using an aircraft flying at 915 m with an
average speed of 250 km hour−1, and an Optech ALTM 3100 LiDAR sensor with a pulse
rate frequency of 100 kHz. Intensity data from this sensor’s near-infrared laser beam has

Figure 1. Study site at the Fernow Experimental Forest (a), WV, USA, showing a portion of the
delineated tree crowns (White polygons) in the Watershed #4 (WS4) reference compartment (b). The
background image illustrates tree crown differences in the autumn phenology by displaying
Worldview-2 bands Red edge, Yellow, Blue in the red, green, and blue (RGB) colour channels. We
use the yellow and red edge bands here because they are effective in capturing autumn phenology.
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been found to correlate strongly with measured spectral reflectance at the laser’s
1064 nm wavelength (Ahokas et al. 2006; Vain et al. 2009). The LiDAR data, collected
with > 50% overlap between flight-lines, provided an average of 6.6 returns m−2. We
focused on LiDAR variables that are routinely calculated using standard GIS and remote
sensing software in a raster environment. First-return data were rasterized to produce a
Digital Surface Model (DSM), and last returns to produce a Digital Elevation Model
(DEM). Rasterization was done in ArcMap 10.5 with a common 0.5 m cell size by
assigning the average of all points within a cell as the elevation and linear interpolation
as void fill method. We created a Canopy Height Model (CHM) from the difference
between the DSM and the DEM. We rasterized the LiDAR intensity data using all the
returns in each 0.5 m pixel.

Figure 2. The Fernow Watershed #4 portion of the study area. (a) Spring image. (b) Summer image.
(c) LiDAR canopy height model. (d) LiDAR intensity. (a) and (b) are standard false colour infrared
composites (bands NIR, Red, Green displayed as RGB). In each image, pixels with a canopy height
less than 5 m are masked (and displayed in white) in order to highlight the variability among intact
canopies. Compare to Figure 1, which shows the autumn phenology image.
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We selected three high-resolution satellite images to best characterize phenological
differences among species (Figures 1 and 3 and Table 1). Visual inspection of the images
indicates that the image dates correspond to three key phenology phases within broad-
leaf deciduous forests: the leaf emergence and flowering phase of spring (Figure 3(a)),
the full-canopy development of summer (Figure 3(b)), and the leaf senescence and
abscission of autumn (Figure 3(c)). All three sensors, GeoEye, Pleiades and WorldView2
provide approximately 2 m multispectral (MS) bands, as well as an approximately 0.5 m
panchromatic band. Our spring and summer images have four MS bands, and the
autumn image has eight bands (Table 2).

2.5. Image pre-processing

We separately registered themultispectral and panchromatic images to the base layer of the
LiDAR Canopy Height Model using Erdas Imagine 2016 and ArcMap 10.5. We applied a
rational polynomial coefficient (RPC) sensor model (Toutin 2004) with elevation information
and with ground control points (GCPs) to achieve a low RMSE (<1 pixel) for image registra-
tion (Supplemental data, Table S1). Next, for each GeoEye, Pleiades and WorldView 2
multispectral and panchromatic band, we used the image metadata (IMD file) to convert
digital numbers to ground reflectance using the CosT approach (Chávez 1996).

Figure 3. Flowchart of identifying tree species in FEF.

Table 1. Metadata of the imagery used in the study.

Sensor Acquisition date
Phenological

period
Off-nadir view

angle (°)
Pan band

resolution (m)
Multispectral band
resolution (m)

LiDAR 20 July 2014 Summer 0–25
GeoEye 6 June 2014 Summer 8.0 0.42 1.67
Pleiades 15 May 2015 Spring 20.6 0.70 2.80
WorldView2 26 October 2014 Autumn 26.7 0.57 2.28
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2.6. Crown delineation using field and imagery data

The focus of this work is on object-based classification. In this paper, we only explore the issue
of classification, and not errors due to segmentation issues (Liu and Xia 2010). Therefore, we
used manually delineated crown polygons to ensure the highest accuracy in the segmenta-
tion. We visually compared tree crown field maps with high-resolution LiDAR height data, as
well as panchromatic data layers from the spring, summer, and autumn images. From these
data sources, we manually delineated the non-overlapping polygons as 267 mapped tree
crowns. In our analysis, we only attempt to discriminate crowns from the four most abundant
tree species. Thus, our analysis dataset includes 57 red oak, 32 sugar maple, 26 tulip poplar,
and 20 black cherry crowns for a total of 135 total tree crowns.

2.7. Variable extraction

By computing the zonal average within each delineated tree crown, we extracted six
groups of variables (Table 3): spectral reflectance from all multispectral bands in the (1)
spring, (2) summer, and (3) autumn images, (4) vegetation indices derived from the
three multispectral datasets, (5) canopy height and intensity from the LiDAR imagery,
and (6) texture related variables from the panchromatic and LiDAR datasets. For vegeta-
tion indices, we computed the normalized difference vegetation index (NDVI) using the
red and NIR multispectral bands from the spring, summer and autumn images. Using the
eight spectral bands of WorldView 2 imagery, we also calculated additional vegetation
indices on the autumn image: red edge and yellow band ratio (Waser et al. 2014), plant
senescence index (Omer et al. 2016), NIR and yellow band ratio (Waser et al. 2014) and
enhanced vegetation Index (EVI) (Omer et al. 2016) (Table 3).

Textural characteristics may vary based on several aspects of crown architecture that
may differ among species, including internal shading, leaf orientation, as well as leaf
density and size (Sayn-Wittgenstein 1978). We used the panchromatic reflectance of the
spring, summer, and autumn images, as well as LiDAR height and intensity data layers,
to compute four types of texture variables (Haralick, Shanmugam, and Dinstein 1973)
based on the grey-level co-occurrence matrices (GLCM). The texture was calculated
within eCognition. The eCognition GLCM texture averages the four directions 0°, 45°,
90°, 135° at an offset of 1 pixel (Trimble 2011). The four texture features are as follows:
(1) Homogeneity, which describes the similarity of pixel values within the local region; a
high value indicates a more homogeneous region. (2) Contrast, which summarizes the
variation of pixel values and a high value indicates a locally more heterogeneous region.
(3) Entropy, which is a measure of the disorder or randomness in the image values. (4)
Dissimilarity, which is a measure of the heterogeneity of pixel values within the local
region (Warner 2011).

Table 2. Image band wavelengths.
Wavelength (nm)

Sensor Pan Coastal Blue Green Yellow Red Red Edge NIR1 NIR2 LiDAR laser

LiDAR 1064
GeoEye 450–800 450–510 510–580 655–690 780–920
Pleiades 470–830 430–550 500–620 590–710 740–940
WorldView2 450 – 800 400 – 450 450–510 510 – 580 585 – 625 630–690 705–745 770–895 860–1040
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In total, we extracted 52 variables for each individual crown. These include 11
variables from the spring Pleiades image, 11 variables from the summer GeoEye
image, 20 variables from the autumn WorldView2 image (Extra variables from
WorldView2 were calculated from four additional bands compared with GeoEye) and
10 variables from LiDAR (Table 3).

2.8. Data analysis

To avoid problems due to the ‘curse of dimensionality’ (Hughes 1968) associated with
discriminating 4 species from 52 variables, we selected the best subset of variables
before classification in R (R Core Development Team 2016). We used rfUtilities package
(Evans and Murphy 2014) to select variables based on variable importance. We used
caret package (Kuhn et al. 2016) to run a step-wise RF with the best 10%, 15%, 25%,
50%, 75%, and 90% of the variables retained. We generated 500 trees for each RF model.
Based on prior experience which suggested any number greater than 100 was sufficient;
we used 500 to be sure the number was large enough. The optimal number of variables
available for splitting at each node (mtry) was selected using 10-fold cross-validation
and ten different values were assessed. This 10-fold cross validation randomly split data
into 10 subsets; 9 of them are used for training and 1 retained for testing each time. The
average was calculated in the model as final accuracy (Maxwell, Warner, and Fang 2018).
From this, we selected the top 50% of the variables as the greatest per cent that
retained the most signal while minimizing redundancy and noise. The cross-fold valida-
tion approach was used so that classification trains a classifier with a number of samples
that is similar to the number of variables. Accuracy could be evaluated based on data
entirely separate from that used in developing the model. RF does offer estimates of
accuracy based on data withheld from subsets of the model used in developing the
trees (so-called out of bag estimates), but we prefer to use entirely separate data for
both overall accuracy assessment and the confusion matrices (Maxwell, Warner, and
Fang 2018). Using the six groups of variables described in Section 2.6, we conducted a
preliminary test to evaluate the accuracy of RF models that only drew from an individual
group of variables (see Figure S1 and Table S2 in the supplemental material). As we
expected, the Kappa values obtainable from a single group were markedly lower than
combining groups, so we focused the remainder of our analysis on testing our hypoth-
eses concerning the combination of spectral features with structural features to enhance
tree species discrimination.

To test how each group of variables enhanced model accuracy, we iteratively
removed each of the six groups of variables and recorded the effect on the Kappa
value derived from the 10-fold cross-validation of the RF model. These RF models used
31 features with spring image variables excluded, 31 features with summer image
variables excluded, 21 features with autumn image variables excluded, 32 features
with LiDAR variables excluded, 30 features with texture features excluded, and 32
features with vegetation indices excluded. Finally, in order to understand the patterns
and mechanisms of how the variables used in the RF modelling are useful individually
and in combination for discriminating tree species, we used ANOVA (assumptions tested
in Supplemental data, Table S3), paired t-tests, and unpruned decision trees generated
in R with the rpart package (Therneau, Atkinson, and Ripley 2017). An ANOVA test can
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help to test the difference among group means with the hypothesis that the group
means are equal. F-ratio is the ratio of between groups to within-group variance. Group
means are significantly different when the p-value (significance) is less than 0.05 and
F-ratio is larger than 1.

A single decision tree classification tends to be less accurate than RF, which
employs an ensemble of trees (Maxwell, Warner, and Fang 2018). Nevertheless, the
single decision tree has the advantage of being simple and intuitive to interpret.
Because our main aim in this study was to explore the importance of different data
layers, a decision tree classification is therefore used as a supplement to the RF
classification. The decision tree classification was carried out with the rpart package
(Therneau, Atkinson, and Ripley 2017). The tree was automatically pruned based on
cp = 0.01, minsplit = 20, maxcompete = 4.

3. Results

3.1. Data combinations and random forest model accuracy

The Random Forest model achieved a Kappa value of 42.4% (with an overall accuracy (OA)
of 62%) when we ran it with the top 50th percentile of all the variables from all groups.
Notably, the variables in this top 50th percentile were drawn from each of the six groups of
variables (Table 4). When we iteratively excluded groups of variables, we found that
removing each group caused a notable decrease in Kappa value compared with results
from a full model (Figure 4). Removing variables from the summer GeoEye image caused the
largest percentage (6.1%) drop in Kappa value, from 42.4%with the full model to 36.3%. The
LiDAR variables were the nextmost useful group of variables, reducing Kappa by 5.1%when
they were excluded. The four other groups of variables all caused smaller decreases in
Kappa value, but still reduced model performance considerably. The overall magnitude of
reduced performance in these four other groups was between 2.3% and 3.9% in terms of
Kappa value, corresponding to a 5–10% relative reduction in the model performance in
comparison to the full model.

The confusion matrix from RF using the top 50th percentile of variables indicates that the
sample size of each species likely influenced the results. Red oak (N = 57 crowns) had the
largest producers (PA) and users accuracy (UA), while black cherry (N = 20 crowns) had the
lowest accuracy (Table 5). Confusion matrices from other RF models highlight substantial
drops in accuracy for individual species when certain of groups of variables were withheld
(Supplemental data, Table S4). This was especially evident for sugar maple, which fell from a
58% UA and 48% PA in the 50th percentile RF model to a 40% UA and 31% PA in the model
with the LiDAR data withheld (Supplemental data, Table 4(b)).

3.2. Useful variables identified by ANOVA and a decision tree

ANOVA analyses revealed that LiDAR intensity had the strongest individual ability to
discriminate tree species (Table 4), and further analysis using pair-wise t-tests revealed
that sugar maple had significantly higher intensity than other species (Figure 5(a)).
Reflectance in the blue wavelengths during the spring and summer was among the
next strongest variables (Table 4), and t-tests revealed that red oak crowns had lower
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summer blue reflectance and higher spring blue reflectance (Figure 5(b, c)). The vegeta-
tion indices also proved to be useful variables (Table 4), particularly the plant senescence
index which indicated a notably higher index value for tulip popular during the autumn
phenology image acquisition (Figure 5(d)).

Most of these useful variables were also selected by the decision tree analysis. The
most parsimonious decision tree used 8 variables. As with the RF model, the decision
tree notably contained variables derived from each of the four image datasets (spring,
summer, autumn, and leaf-on LiDAR) (Figure 6). Summer blue reflectance was the initial
node, followed by blue and brightness bands from the spring image. Three spectral
indices describing species differences in the autumn senescence, and two LiDAR vari-
ables describing differences in intensity and entropy of height provided the final nodes
discriminating all four species (Figure 6).

Table 4. Features selected by random forest, feature selection sorted by decreasing F-value obtained
from ANOVA tests of species differences.
Feature name Significancea F-ratio Variable groupsb

Average intensity < 0.001 10.1 LI
Spring blue reflectance < 0.001 9.22 SP
Summer NDVI < 0.0001 9.02 SU&VI
Spring NDVI < 0.0001 8.20 SP&VI
Spring NIR reflectance < 0.0001 7.93 SP
Summer red reflectance < 0.001 7.75 SU
GLCM entropy of intensity < 0.0001 7.72 LI&TE
Summer blue reflectance 0.0002 7.20 SU
Autumn GLCM entropy 0.0002 7.16 AU&TE
Spring GLCM entropy 0.0002 7.11 SP&TE
Spring green reflectance 0.0003 6.79 SP
Spring Brightness 0.0003 6.79 SP
Summer GLCM entropy 0.0005 6.33 SU&TE
LiDAR GLCM entropy 0.0013 5.53 LI&TE
Autumn blue reflectance 0.0020 5.21 AU
Autumn Plant Senescence 0.0022 5.13 AU &VI
Autumn NIR and yellow ratio 0.0031 4.84 AU &VI
Autumn coastal reflectance 0.0033 4.81 AU
Autumn Red Edge and yellow ratio 0.0075 4.16 AU &VI
Autumn NIR2 reflectance 0.0096 3.96 AU
Autumn red reflectance 0.0108 3.88 AU
NIR1 reflectance 0.0130 3.73 AU
Sping red reflectance 0.0140 3.67 SP
Autumn Brightness 0.0172 3.51 AU
Autumn NDVI 0.0218 3.33 AU &VI
Autumn Enhanced vegetation index 0.0269 3.16 AU &VI
Autumn Red Edge reflectance 0.0343 2.97 AU
LiDAR GLCM homogeneity 0.0346 2.96 LI&TE
Autumn Panchromatic reflectance 0.0406 2.84 AU
Spring Panchromatic reflectance 0.0427 2.8 SP
LiDAR Tree height NS 2.58 LI
Intensity GLCM contrast NS 1.76 LI&TE
Intensity GLCM dissimilarity NS 1.59 LI&TE
Autumn yellow reflectance NS 1.32 AU
Summer NIR reflectance NS 1.23 SU
Summer GLCM dissimilarity NS 0.79 SU&TE
Summer Brightness NS 0.63 SU
Autumn green reflectance NS 0.52 AU
Autumn GLCM homogeneity NS 0.13 AU &TE

aNS: not significant
bSP: Spring; SU: Summer; AU: Autumn; LI: LiDAR; TE: Texture;; VI: Vegetation indices
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Figure 4. Per cent of Kappa value lost by removing each group of variables.

Table 5. Confusion matrix from RF classification of individual trees with top 50th percentile of
variables.

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 2 0 1 1 4 50
Red oak 10 50 14 5 79 63
Sugar maple 3 5 15 3 26 58
Tulip poplar 5 2 2 17 26 65
Total 20 57 32 26 135
PA (%) 10 88 47 65

OA (%) = 62

PA: Producer’s accuracy; UA: User’s accuracy; OA: Overall accuracy

Figure 5. Key results from the ANOVA tests, letters denote significant differences in means, as
assessed by pair-wise t-tests.
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4. Discussion

Our results strongly support the hypothesis that the combination of phenology and
structural information from individual tree crowns can enhance the discrimination of
tree species. First, our RF results supported the hypothesis that each group of variables
would enhance model performance (Figure 4). Our separate analysis using decision trees
supported this combination because all three phenology images and LiDAR were
included in the most parsimonious decision tree (Figure 6). However, the relative degree
to which the groups of variables affected model accuracy differed from some previous
studies. For instance, whereas we found the summer and spring phenology periods to
contain the most useful variables for species discrimination (Figure 4), others have found
a peak autumn image to be most useful (e.g. Key et al. 2001). Even so, reflectance and
spectral indices from the autumn image were selected by RF (Table 3), and also formed
key parts of the decision tree analysis (Figure 6). Thus, our data still indicate strong
support for including autumn phenology in species discrimination methods. The RF
analysis also indicated that LiDAR-derived variables were the second most useful group
of variables, which adds support to a growing number of studies emphasizing the
importance of LiDAR information for tree species classification (Dalponte, Bruzzone,
and Gianelle 2008; Donoghue et al. 2007; Eitel et al. 2016; Ghosh et al. 2014; Jones,
Coops, and Sharma 2010; Kim 2007; Korpela et al. 2010; Voss and Sugumaran 2008).

Our ANOVA and decision tree analyses suggest several mechanisms by which
spectral and structural information help discriminate broadleaf deciduous tree spe-
cies based on their unique phenology and crown architectural traits. Specifically, the
spectral information in the visible wavelengths helps to describe the unique phenol-
ogy of leaf pigments and photosynthetic activity in each tree species, while the
phenology of NIR spectral reflectance and LiDAR describe essential species differ-
ences in tree crown architecture (Asner 1998; Eamus, Huete, and Yu 2016; Gates et al.
1965; Mohammed et al. 2000; Ollinger 2011; Rautiainen et al. 2004). First, our
observations that red oak has a high spring blue reflectance (Figure 5(c)), low

Figure 6. Decision tree based on 50th percentile of variables. Affirmative logical decisions are in
each case to the left.
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summer blue reflectance (Figure 5(b)), and a high autumn NIR reflectance (Figure 6)
matches with field observations that red oak crowns tend to have a later leaf
emergence in the spring, grow dense crowns of photosynthetically active leaves in
the summer, and senesce later in the autumn relative to other species. High GLCM
entropy of height as indicated by the decision tree differentiation of red oaks
(Figure 6) suggests that red oak has relatively more within-crown gaps than other
species. Next, a higher plant senescence index for tulip poplar (Figure 6) matches
field observations of an earlier autumn leaf senescence in tulip poplar than other
species (particularly red oak). Finally, coupled with observations of its lower entropy
of height, observations of high summer LiDAR intensity (Figures 5(a) and 6) indicate
that sugar maple has a flatter and more horizontal crown architecture (Budei et al.
2018; Fassnacht et al. 2016; Kim et al. 2009). The importance of LiDAR for character-
izing this unique crown architecture of sugar maple was borne out by the large drop
in classification accuracy when LiDAR variables were removed from the RF model
(Table 4 and Supplemental data Table 3 (b)).

Although the overall accuracies obtained in this study were lower than might be useful
for mapping purposes, we emphasize that the ultimate purpose of this study was to
provide guidance in data selection for future mapping, and not necessarily to produce a
map directly from these data (see, for example, Key et al. 2001, for a similar research
design). Indeed, the strong complementarity of spectral and structural information in our
study illustrates how the combination of LiDAR and multi-temporal images can contribute
to tree species discrimination, especially in forests where trees have similar functional types
and reflectance characteristics (Alonzo, Bookhagen, and Roberts 2014; Dalponte, Bruzzone,
and Gianelle 2008; Jones, Coops, and Sharma 2010). Yet, the overall accuracy of our
discrimination algorithm (Kappa = 42%) highlights that substantial obstacles still remain
toward an ultimate goal of automatic crown-level species discrimination from remotely
sensed data. Our study exemplifies the challenge of these obstacles. First, our study design
relied on available archived data. While we were able to match archive data to key
phenology periods, it was challenging to precisely co-register the images that had less
than ideal viewing geometries (Table 1), and were collected over a topographically com-
plex study site. Second, study areas like the Fernow Experimental Forest are especially
challenging for discriminating tree species because the trees (1) have similar growth forms,
leaf types and leaf habits, and (2) have high within-species variance in phenology and
crown architecture linked to strong competition for light within a diverse forest on steeply
sloping terrain. Given these unique characteristics of our study design and study area, we
suggest that our classification accuracy and evidence of data combination are quite
conservative results. As such, in more forgiving study contexts, we would expect substan-
tially higher accuracies and even stronger evidence for the advantage of combinations of
multispectral and LiDAR data.

5. Conclusion

The significant contribution of this paper is that combining multi-temporal imagery with
leaf-on LiDAR can enhance the ability to discriminating tree species based on their
phenology and crown architectural characteristics. Specifically, our results reveal that the
combination of multi-temporal high-resolution images with leaf-on LiDAR data improves
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the discrimination of four broadleaf deciduous tree species: red oak, sugar maple, black
cherry and tulip poplar. We tested six groups of variables for their classification perfor-
mance: (1) spring, (2) summer, and (3) autumn phenology, (4) height and intensity data
from leaf-on LiDAR, (5) spectral indices and (6) texture information. When a specific
group of variables was removed, the decrease in Random Forest classification accuracy
demonstrates the importance of such variables. In addition, our ANOVA and decision
tree results illustrate specific mechanisms to discriminate species based on their unique
phenology and crown architectural properties. Continuing to build on these findings can
provide a robust path toward the ultimate goal of automatic crown-level tree species
discrimination.

The RF classification indicated that the Kappa value dropped each time a specific group
of variables was removed. This strongly indicates all three seasons of high-spatial resolution
multi-temporal satellite data and leaf-on LIDAR enhanced the ability to discriminate trees
species. We find that summer phenology is most helpful to classify tree species since our
model is most affected (declined in Kappa accuracy of 6.1%) by removing summer phenol-
ogy features. Crown structural and architecture features from LiDAR were the second-best
variables for discriminating tree species. Next, texture features, fall phenology and vegeta-
tion indices showed similar importance for tree species classification. Variables from a spring
image were the least helpful to classify tree species, but they still cause 2.3% drop in Kappa
value when excluded.

The decision tree and ANOVA results provide additional evidence regarding how
these imagery sources combine to identify the distinct spectral and structural properties
for each tree species. We found blue band reflectance from multi-temporal remote
sensing imagery to be a useful variable in describing unique phenological and structural
features associated with leaf emergence. Autumn NIR may be important for capturing
differences for red oak associated with leaf senescence. Moreover, for crown architec-
tural properties, relative lower summer blue reflectance indicates dense crowns; higher
entropy of height suggests more within-crown gaps in red oak. In another abundant
species, sugar maple, we also found that higher summer LiDAR intensity corresponds
with flatter crown architecture (Lower height entropy). Thus, for discriminating broadleaf
deciduous tree species, this study supports the utility of high spatial multi-temporal
satellite images in the spring, summer and fall to capture the most distinctive phenology
patterns while also supporting the use of leaf-on LiDAR for capturing key differences in
tree crown architecture.
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